LOGS AGAIN

Flushed with success at demystifying decibels, Joules
Watt has not yet finished with logarlthms. e

short while ago I commented upon
A\'/vhat might be called slovenliness,
egarding the use of decibels .

If not slovenliness, at least loose thinking
about such matters causes confusion for the
poor student. This has become true for
novice radio amateurs as well. One confided
to me, “It struck a little fear into nearly all
the RAE class, when the mysterious dB arose
in transmitter power discussions”.  hope my
short discourse earlier helped dispel some of
the mystery.

But we are not out of the wood yet,
because two colleagues took me to task with
criticisms. One said, “You got no further
towards helping anyone see the meaning of
response curves. Are the 6 dB per octave
slopes a drop-off in power gain or voltage
gain?” The other fellow suggested I too was
being a little slovenly, in that doubling the
power is not exactly 3 dB up, therefore four
times is not exactly 6 dB, and so on. He is
right, of course, but the differences are very
small, as Table 1 shows.

Much of all this argument appears to rest
on the properties of logarithms. Long gone
are the days when we slaved away looking up
columns of figures in tables for something
called the mantissa and something else
called the characteristic — or are they?
Nevertheless, it was only when we arrived at
the integral calculus that we discovered a
mysterious “irrational” number called e. As
with  before it, we were told that “it has an
unending, never repeating decimal part,
which arises naturally...”

It soon became obvious that logs arise
from this number e, as well as via the laws of
indices generally. A logarithmic result to the
base e is obtained when the area under a
rectangular hyperbola is sought by using the
integral

y=J%=lnx (1)

The symbol “In” reads “The natural logar-
ithm of...” and is also written “log,”. The
common logs to the base ten (written log;,
or just log for short from now on), cropped
up recently in the discussion of decibels'.
Log to the base 2 (log,) is seen in discussions
concerning information and communica-
tions theory.

When physical quantities, instead of pure
numbers, become involved in this kind of
calculation, trouble tends to arise. Pure
mathematicians avoid all that by claiming
that they work with pure numbers only.
Dimensions never come into things. En-
gineers, on the other hand, are always
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talking about so many amps, volts, newtons,
watts and the question is asked as to whether
the unit is inside the symbol — or attached
separately. In other words, is the quantity R
a number complete with dimensions ohms
within it, or should it be written R ohms,
where R is a pure number?

From the integral (1) y is certainly dimen-
sionless, because if x has dimensions, the
small bit of it, dx, has the same dimensions,
and these cancel in the ratio. But if x does
have dimensions, say watts, then the ques-
tion is whether log of watts can equal a
dimensionless number? This is not a real
problem, because I have neglected the fun-
damental need for a constant to add on to
any integration. In this case (for example) we
can say “let x = p watts when 'y = 0” so that
the constant is —1n p and the complete
answer is:

LAl
y np

and everyone is happy, as we have a pure
ratio of watts over watts again.

But this is not so for the ‘quantity-
calculus’ people 2%, who argue that the
symbols of the units can be handled and
juggled just like numbers. You can square
them, divide, take logs of them. And so, as
you might expect, a fairly hot controversy
has raged over the claim to do this.

After considering these arguments, [ in-
cline towards the old view that quantities
cannot have logs taken of them — or the sine,
tangent and so on, for that matter. We can
only use ratios of same-dimensioned quanti-
ties in the arguments of the transcendental
functions. Of course, all the modernists will
label my stand as reactionary.

In practice there is no trouble, because
the measure of quantities is really a ratio in
every case. A voltmeter reading 20 volts is
really saying, “The basic unit (volt) goes into
the value being read (20 volts) 20 times. i.e.,
20 volts/volt equals 20 times.” Therefore if
we take logs of a power in watts, we are really
taking cognizance of a number of times a
quantity is in a ratio to the basic unit.
Therefore 1010g P is really 101og P(watts)/
watt or so many dBW.

If we are told that the comparator unit is
milliwatts, then the operation can be written

10°P(milliwatts)
milliwatt

P(watts)
milliwatt

10log =10log

dBm = (30+dBW)

TABLE1
P,/P, 10log (P,/P;)  Usually taken as:
2 3.0103 3dB
4 6.0206 6dB
8 -9.0309 9dB
10 i 10 10dB
64 18.0618 18dB
100 20 20dB
2.749x10"! 114.3914 114dB
(30 doublings)
£ t OV
2 Ry
4
Vo
-0

Fig.1. This typical j.fet resistance-capaci-
tance coupled amplifier stage is typical of
all such active device gain blocks, (with
appropriate attention to input and output
impedances). The unmarked components
are assumed not to affect the frequency
response. In other words, C. dominates at
the low end, while the strays can be lump-
ed together as C; to limit the performance
atthe high end.

THE PLOT THICKENS
(at least towards the high values..)

Displaying data logarithmically to expand
the detail at the low end of the scale and
compress it at the high end enables a huge
range of information to be shown on one
sheet of graph paper. This explains why log —
log and log - linear graphs are so ubiquitous
in engineering reports and scientific papers.
You can get log paper in so many cycles
(decades usually) along the two axes. One
consequence is that the true origin goes off
to infinity downwards and to the left along
the axes. (Log 0 — =).

Another reason why log plotting is so
useful is that many phenomena vary logar-
ithmically, which means many data
measurements produce straight line plots
on log —log paper. Other “laws” which would
produce curves on linear-only paper, will
produce straight line plots on log —lin paper.

Again, to overcome the “worry” about the
meaning of units along the log axes, we
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think of the numbers as ‘so many units per
unit’ of the quantity, so that you are never
taking the log of anything but a pure ratio. (A
ratio is a pure number, but a rate is a
quotient of different quantities — like ‘miles
per hour’.)

IT BODES WELL

By measuring the power output of an ampli-
fier and (with the same power meter) the
power input, we can take their ratio and thus
write down the power gain in dB. Whether
this is the available power gain, or the
transducer gain, or matched power gain and
S0 on, is another confusion, as it dawns upon
us that different people define power gain
differently. Nevertheless, the ratio of two
powers to give decibels is now basically
simple.

The question might arise as to relative
gain over, say, the frequency band of an
amplifier. It might also be asked for in terms
of the voltage gain. But we sigh with relief
because the relative gain will be measured at
the same point (the output terminals) and
therefore across the same impedance,
assumed to be a non-reactive load for in-
stance. This means that voltages can be
measured for the decibel levels.

All amplifiers suffer shunting-capacitance
losses as the frequency rises. These strays
cannot be eliminated, so gain falls off some-
where at the high end. Many amplifiers have
series coupling capacitors (except d.c.
amplifiers) so however large these are, even-
tually the gain will drop off towards the low
frequency end as the magnitude of the
reactance increases beyond the resistance
values. In other words, all amplifiers are
bandpass circuits. The bandwidth B is the
frequency interval between the “3 dB down”
points. Of course, specialized amplifiers
might depart from this simple scenario.
Baxandall tone control stages would do so,
for example. Figure 1 shows how a simple
voltage amplifier fet stage appears.

Figure 2 shows the well known equivalent
generator circuit for such a stage incorpo-
rated into the mid-frequency range, where
the capacitances have no effect; the low
frequency region, where C. dominates, but
the shunt strays do not; and at the high
frequency end where the total shunt capaci-
tance C, dominates, but C. does not. These
notional independent regions are the usual
assumptions made about a fairly wide-band
amplifier, but for narrow-band cases other
methods have to be used.

The mid-band voltage gain is simply the
voltage-controlled generator current multi-
plied by the total equivalent resistance at the
output:

V,
Amidzz,_(:: —8mReq
l’deRL

Where Req =vrde * rdRL+ RdRL

In order to see the effect of C; at high
frequencies, it is added in shunt to R.q as
shown in Fig.2(b)
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therefore: i: lR
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This canbe written 7 ®
1+jo;
1
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where

The ratio of the high-frequency gain to the
mid-frequency value, is called normalization
— in this case, normalizing to the mid-
frequency gain as a reference. It is as though
we have set the mid value to unity, but
normalization does more than that, it re-
moves any dimensions of the quantities in
the ratio, (although in this case, the As are
already dimensionless).

The result derived for the normalization
voltage gain is a complex number. You
probably remember such numbers have real
and imaginary parts. Because I introduced
phase shifts resulting from the circuit react-
ances by using the operator j, the complex
result arises naturally. It has the advantage
that when written down in the polar form,
the amplitude (or magnitude) and the phase
angle are immediately given. In the present
context, these two pieces of information tell
us all we want to know about the amount of
amplification on the one hand and the shift
in phase of the output relative to the input,
at any given frequency, on the other.

1 1

AT T {—tan*1 ©
O] 2 @y (2)
1+'](1)1 1+%5 20 58
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I have written this result using the rather
out of fashion notation for amplitude A, and
angle/_ O, but which has merit and perhaps
we should rehabilitate it a little.

Returning to Fig.2(c) where I show the
equivalent circuit for the low-frequency end,
the effect of C, is now negligible, but that of
C. rises into prominence. The generator
current divides into rq and Ry in parallel as
one path, and C. in series with Ry, as the
other. I have combined the result of ryand Ry
in- parallel as Rp and, using the current
divider formula, the current through R can
be written down. Knowing the current
through the load resistor will give the
voltage across it, namely, v,.

G = RngV RL
o RD+RL _]X
1

wC,

where Xi=

The algebra can be re-arranged to givea 1 +j
term in the denominator to make it look like
the first result:
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Fig. 2. In (a) the mid-band equivalent circuit

is shown. The ‘mid-band’ can be defined as
Wmid= V 0102, At (b) is the effect of Cs
which shunts the output circuit. The “3 dB
down” frequency is that at which the
maghnitude of the reactance of C; becomes
equal to Re,. This frequency, also known as
the ‘high-frequency cut off point, is de-
noted w, where w, is 2uf, f, is the
frequency in hertz.

The low-frequency case shown in (c) is a
little more awkward, in that C. is in series
with R, and this is in shunt across the rest
of the resistive components. w; is the cut
off frequency at the low end and it occurs
atthe frequency where the reactance of C,
has a magnitude equal to R, summed with
the resultant of ry and Ry in parallel.

Vo_ —RogmRi _ —Reggm i(Rp+Ru)
Vi RD+RL_ch 1+.RD+RL. Xc
J %
_Rqummi1
- 1+ig:

Where R, is the same as before.
Writing the final line for the normallzed
gain at low frequencies, we obtain:

A

m—tan
mld 1+Jw1 »\/1+ L_w‘l

This time w; stands in for 1/(Ry+R;)C. and
is another cut-off point — the low frequency
one. These values, w; and w,, are also called
“break” frequencies. The reason for these
terms becomes obvious when we get back to
logs shortly.

Before taking logs of the amplitude of the
low and high-frequency gain variations, I
have plotted in Fig.3 the linear amplitude
versus frequency result as an instructive
illustration of a direct attack. This turns out
to be less useful than at first thought. A log —
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Fig.3. A very lop-sided result occurs if
linear plots are attempted for frequency.
response. Also such curves accord very
badly with subjective results, considering
the logarithmic response of the ear.
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Fig.4. A Bode plot such as that shown here
for the high-frequency response, is a very
convenient way of using a logarithmic
presentation to give a rapid overview of
data quickly.
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Fig.5. A similar plot at the low-frequency
end of an amplifier's response gives simi-
lar information just as conveniently.

log plot (on log — lin paper, because decibels
are used on the vertical axis) is much more
fruitful. The log plots turn out to be “piece-
wise linear” and they are all associated with
the name Hendrik Bode®. These Bode plots
are a very quick way of seeing the frequency
characteristics of an amplifier, once the
complex gain equations have been derived
and the logs taken.

Consider the high-frequency end of the
amplifier response I have discussed above.
We take common logs of the normalized
gain expression (equation 2):

2
el w_
= 2010g\/ (1+w%
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20log—"-=20log 1 s
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Taking twenty times the log is no mistake —
as we now have the normalized voltage gain
in decibels to plot against the log of the
frequency.

Ifyou take a look at the log equation above
with w<<w, then the right-hand side
approaches log 1, which is 0. Therefore, on
the log plot there is a horizontal line at 0 dB
which corresponds to the normalized mid-
band value. Now consider w>>w,. The “1”
can be neglected now in the bracket of the
log argument:

e
Ania/dB
Plotting this on Fig.4 gives a straight line

with a slope of —20 units for every factor of
ten times w increase. The units here, of

—20log~
w2

course, are decibels. The two asymptotes.

have a common point at w=w,. Therefore on
the log plot, an approximation to the ampli-
fier response has been obtained with a sharp
“break” point at w,. You can see that in
practice, at w=w,, the argument of the
logarithm is V2, and the actual response is
down 3 dB at this point. When the frequency
is at twice the cut off value, then the actual
response is 201ogV/5 = 7 dB down. This is
one decibel lower than the asymptote at the
2w, point. Similarly, at half w, the response
is again one dB lower. This means we can
sketch the actual smooth response curve
quite accurately. The last notable comment
to make is that the slope of the response
curve approaches “6 dB per octave”. We now
have all the ‘jargon’ commonly met in these
discussions. The “3 dB down” point; “6 dB
per octave” or “20 db per decade”; “break
point” and so on. :

This kind of response is typical of a
“one-pole system”, where the pole is at the
frequency which makes the denominator
zero in equation 6. The lower break point is
obtained in the same way, except that there
is a “zero” in the numerator (see equation 3)
as well as a pole at w;. I will “leave it as an
exercise for the student” as the saying goes,
to sketch the Bode plot at the low end. You
should get a curve such as that in Fig.5. I
have also left out of the discussion the plot of
the phase angle from the tan ™! information.
For completeness this should be done and
readers can do it themselves, if interested.

I have mentioned poles and zeros. They
have arisen naturally in logarithmic discus-
sions of response curves via Bode plots. But
any further look at them is a whole topic, and
suffice it must be for now to hope that I have
answered my critic’s point about “what does
it mean about 3 dB down on response
curves?” and in doing so might have pointed
up for you a few of the mysteries of these
curves...
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System X
speedup

to a further 3500 telephones in the

City of London when this System X
exchange went into service at the end of
August.

A panel from the 600 exchange is demons-
trated here by lan Vallance, British Tele-
com’s chief of operations. The new equip-
ment forms one of two exchanges housed at
Wood Street and it replaces two floors of
39-year-old Strowger electromechanical
switches. The other exchange, 726, will be
commissioned shortly.

All telephone users should benefit from an
improvement in the quality of service. But
System X offers many new features to
suitably-equipped customers, such as direct
digital interfacing.

'BT’s System X programme has been lag-
ging some 15 months behind schedule be-
cause of supply problems. But over 70
System X local exchanges are now in opera-
tion nationwide and new digital exchanges
are entering service at the rate of one every
working day. By the end of the decade, half
the BT network and all its trunk circuits will
be digital.

Even rural communities are gaining the
facilities of System X with the introduction
of the smaller UXD5 digital exchange: some
200 are now in use and a further 300 are
being installed or are on order. But seven
million subscribers will remain on analogue
TXE4 systems.

The switch-over at Wood Street took place
at lunch-time on a Friday, which is reckoned
to be the quietest time in the City. With
military precision a squad of exchange staff
completed the conversion in a two-minute
operation: tugging on handfuls of string
festooning the distribution frame, they dis-
connected the old system by pulling out
thousands of tiny plastic wedges. On a
further command, with more string-pulling
they switched in the new.

The benefits of digital switching came
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